

General Description

The GAM-1818F1LB-BKGB is a receiving module that supports single-band&multi-mode. It has built-in highly integrated GNSS receiver chip, supports multi band and multi system cm4f (main frequency 350mhz, 22nm Technology) chip of Third-generation BeiDou Navigation Satellite System (BDS-3). Besides,it is capable of tracking all global civil navigation systems (BDS,GPS,GLONASS,Galileo,QZSS,and SBAS) in all bands.

GAM-1818F1LB-BKGB module is based on the state of art BDS-3 architecture, integrating Single-band and multi-system GNSS RF and base band. This newly designed architecture makes this single chip achieve sub-meter level position accuracy without correction data from ground-based augmentation station and higher sensitivity, greater for improved jam resistance and multipath, provide a highly robust service in complicated environment.

GAM-1818F1LB-BKGB module contains BK1661 positioning engine inside, featuring high sensitivity, low power consumption, and fast TTFF. The superior cold start sensitivity allows it to acquire, track, and get position fix autonomously in difficult weak signal environment. The receiver's superior tracking sensitivity allows continuous position coverage in nearly all outdoor application environments. The high performance signal parameter search engine is capable of testing 16 million time-frequency hypotheses per second, offering superior signal acquisition and TTFF speed.

Applications

- LBS (Location Based Service)
- PND (Portable Navigation Device)
- Vehicle navigation system
- Mobile phone

Figure: GAM-1818F1LB-BKGB Top View

Features

- Build on high performance, low-power BK1661 chip set
- Ultra high Track sensitivity: -165dBm
- Concurrent reception of single-band and multisystem satellite signals
- Supports all civil GNSS signals
- Supports BDS-3 signal
- Extremely fast TTFF at low signal level
- Multipath detection and suppression
- Works with passive and active antenna
- Low power consumption: Max 31mA@3.3V
- NMEA-0183 compliant protocol or custom protocol
- Operating voltage:3.0V~5.5V
- Patch antenna size: 18x18x4mm
- Small form factor: $18.3\pm0.5x18.3\pm0.5x6.65\pm0.5mm$
- Interface type: 5pin pads
- Operating temperature $-40 \sim +85$ °C
- RoHS compliant (Lead-free)

1. Functional Description

1.1. Key Features

Table 1: Key Features

Parameter	Specification			
Power Supply	• Supply voltage: 3.0V~5.5V Typical: 3.3V			
	Acquisition: 25mA @VCC=VBAT=3.3V			
Power Consumption	 Tracking: 31mA @VCC=VBAT=3.3V 			
	• Backup: 20uA @VBAT=3.3V			
GNSS engine	150 tracking channels with fast search engine			
	GPS/QZSS: L1 C/A,L1C			
	GLONASS: L1			
GNSS reception	• GALILEO: E1			
	BEIDOU: B1I, B1C			
	SBAS: WAAS, EGNOS, MSAS, GAGAN			
Update rate	• GNSS:1Hz			
D '.'	• GNSS: <1.5m CEP			
Position accuracy	• SBAS: <1.5m CEP			
	GNSS: 0.01m/s CEP			
Velocity & Time accuracy	• SBAS: 0.05 m/s			
	• 1PPS: 20 ns			
	Hot start: 1.0 s			
Time to First Fix(TTFF)	• Cold start: 28 s			
	• AGPS: 1.5s			
	• Cold start: -148dBm			
Sensitivity	Hot start: -165dBm			
Schsitivity	Re-acquisition: -159dBm			
	Tracking & navigation: -165dBm			
GNSS Operating limit	• Velocity: 515m/s			
G1100 Operating innit	Altitude: 18000m			
Datum	Default WGS-84, User definable			
	UART Port: TXD and RXD			
UART Port	• Supports baud rate from 9600bps to 961200bps, 115200bps by default.			
OAKTIOI	 NMEA 0183 Protocol Ver.4.1, BK GNSS Receiver Protocol 			
	Supports batch data report mode			
	• Normal operation: $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$			
Temperature Range	• Storage temperature: $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$			
	• Humidity: 5% ~ 95%			
Physical Characteristics	• Size: $18.0 \pm 0.5 \times 18.2 \pm 0.5 \times 6.5 \pm 0.5 \text{mm}$			
Physical Characteristics	• Weight: Approx. 7.1g			
	Weight: Approx. 7.1g			

1.2 Power Supply

Regulated power for the GAM-1818F1LB-BKGB is required. The VCC Pin Need a stable DC voltage supply. Power supply ripple must be less than 30mV. The input voltage Vcc should be 3.0V~5.5V, Recommended power supply voltage is 3.3V . maximum current is 31mA. Suitable decoupling must be provided by external decoupling circuitry.

1.3 UART Ports

The module supports two full duplex serial channels UART. All serial connections are at 3V CMOS logic levels, if need different voltage levels, use appropriate level shifters. The baud rate of both serial ports are fully programmable, the data format is however fixed: X, N, 8, 1, i.e. X baud rate, no parity, eight data bits and one stop bit, no other data formats are supported, LSB is sent first. The modules default baud rate is set up 115200bps, however, the user can change the default baud rate to any value from 9600bps to 961200bps. UART port can be used for firmware upgrade, NMEA output and PBK proprietary commands input.

2. Application

The module is equipped with 5pin pads that connect to your application platform. The GAM-1818F1LB-BKGB module It consists of a BK1661 single chip GPS IC which includes the RF part and Baseband part, a patch antenna, a LNA, a SAW filter, a TCXO, a crystal oscillator, Also comes with a 0.07F crystal capacitor can backup satellite ephemeris about 2 hour.

2.1. Pin Assignment

Figure 2: Pin Assignment

Table 2: Pin Definition

Pin No.	Pin name	I/O	Description	Remark
1	VCC	I	Module Power Supply	Voltage range: 3.0V~5.5V
2	VBAT	I	RTC Battery Input	
3	TXD	O	UART Serial Data output	
4	RXD	I	UART Serial Data Input	
5	GND	G	Ground	

3. Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

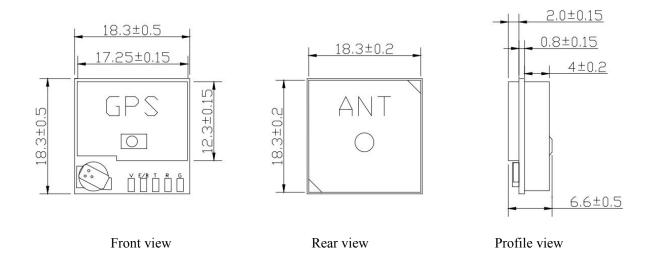


Figure 3: Module Dimensions

4. NMEA 0183 Protocol

The output protocol supports NMEA-0183 standard. The implemented messages include RMC, GGA, GSV ,GSA messages. The NMEA message output has the following sentence structure: AACCC, $C-C^*hh$.

4.1 The detail of the sentence structure is explained in Table 3.

Table 3: The NMEA sentence structure

Character	HEX	Description	
··\$''	24	Start of sentence.	
Aaccc		Address field. "aa" is the talker identifier. "ccc" identifies the sentence type.	
26 27	2C	Field delimiter.	
С-с		Data sentence block.	
۵۰**	2A	Checksum delimiter.	
Hh		Checksum field.	
<cr><lf></lf></cr>	0D0A	Ending of sentence. (carriage return, line feed)	

The formats of the supported NMEA messages are described as follows:

\$GNGGA,\$GNGSA,\$GPGSV,\$BDGSV,\$GLGSV,\$GAGSV,\$GNRMC.

Table 4: Overview of NMEA messages

\$GNGGA	Time, position, and fix related data of the receiver.
\$GNGSA	Used to represent the ID of satellites which are used for position fix. When GPS&GLONASS&Galileo & BDS satellites are used for positioning solutions, the ID of available positioning satellites is counted and
	output with multiple statements.
\$GPGSV \$GLGSV \$GAGSV \$BDGSV	Satellite information about elevation, azimuth and CNR, satellites are used in position solution, a \$GPGSV sentence is used for GPS satellites, a \$GLGSV sentence is used for GLONASS satellites, a \$GAGSV sentence is used for GALILEO satellites. And \$BDGSV sentence is used for BDS satellites.
\$GNRMC	Time, date, position, course and speed data.

4.2 GGA – Global Positioning System Fix Data

Time, position and fix related data for a GNSS receiver.

Structure:\$GNGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x,x,x,x,x,x,x,x,x,x*hh For example:\$GNGGA,175258.000,2447.0870,N,12100.5221,E,2,15,0.7,95.2,M,19.6,M,0000*72

Field	Name	Example	Description
1	UTC Time	175258.000	UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)
2	Latituda	2447 09700	Latitude in ddmm.mmmmm format
	Latitude 2447 08700		Leading zeros transmitted
3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.52210	Longitude in dddmm.mmmm format
7	Longitude	12100.32210	Leading zeros transmitted
5	E/W Indicator	Е	Longitude hemisphere indicator, 'E' = East, 'W' = West
			Quality Indicator
		2	0: position fix unavailable
6	6 Quality Indicator		1: valid position fix, SPS mode
			2: valid position fix, differential GPS mode
			3: GPS PPS Mode, fix valid
			6: Estimated (dead reckoning) Mode
7	Satellites Used	15	Number of satellites in use, $(00 \sim 56)$
8	HDOP	0.7	Horizontal dilution of precision, (0.0 ~ 99.9)
9	Altitude	95.2	mean sea level (geoid), (- 9999.9 ~ 17999.9)
10	Geoidal Separation	19.6	Geoidal separation in meters
11	Age pf Differential		Age of Differential GPS data
11	GPS data		NULL when DGPS not used
12	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
13	Checksum	72	

4.3 GSA – GNSS DOP and Active Satellites

GNSS receiver operating mode, satellites used in the navigation solution reported by the GGA sentence and DOP values.

Field	Name	Example	Description
1	Mode	A	Mode 'M' = Manual, forced to operate in 2D or 3D mode 'A' = Automatic, allowed to automatically switch 2D/3D
2	Mode	3	Fix type 1 = Fix not available 2 = 2D 3 = 3D
3	Satellite used 1~12	21, 12, 15, 18, 20, 24, 10, 32, 25, 13	01 ~ 32 are for GPS; 33 ~ 64 are for WAAS (PRN minus 87); 193 ~ 197 are for QZSS; 65 ~ 88 are for GLONASS (GL PRN); 01 ~ 36 are for GALILEO (GA PRN); 01 ~ 37 are for BDS (BD PRN). GPS, GLONASS, GALILEO and BDS satellites are differentiated by the GNSS system ID in table4. Maximally 12 satellites are included in each GSA sentence
4	PDOP	1.2	Position dilution of precision (0.0 to 99.9)
5	HDOP	0.7	Horizontal dilution of precision (0.0 to 99.9)
6	VDOP	1.0	Vertical dilution of precision (0.0 to 99.9)
7	GNSS System ID	1	1 for GPS, 2 for GLONASS, 3 for GALILEO, 4 for BDS
8	Checksum	18	

4.4 GSV – GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission.

For example: \$GPGSV, 4,1, 13, 02,72, 109, 43,24, 69,035, 48,18, 52,330, 42,21, 49,246, 43, 1*69

Field	Name	Example	Description
1	Number of message	4	Total number of GSV messages to be transmitted (1 - 5)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	13	Total number of satellites in view $(00 \sim 20)$
4	Satellite ID	02	$01\sim32$ are for GPS; $33\sim64$ are for WAAS (PRN minus 87); $193\sim197$ are for QZSS; $65\sim88$ are for GLONASS (GL PRN); $01\sim36$ are for GALILEO (GA PRN); $01\sim37$ are for BDS (BD PRN). GPS, GLONASS, GALILEO and BDS satellites are differentiated by the GNSS system ID in table4. Maximally 12 satellites are included in each GSA sentence
5	Elevation	72	Satellite elevation in degrees, $(00 \sim 90)$
6	Azimuth	109	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	43	C/No in dB (00 ~ 99) Null when not tracking
8	Signal ID	1	1 for L1/CA, 4 for L5/CA
9	Checksum	69	

4.5 RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure: \$GNRMC, hhmmss.sss, A, dddmm.mmmm, a, dddmm.mmmm, a, x. x, x. x, ddmmyy,,, a*hh For example: \$GNRMC, 175258.000, A, 2447.0870, N, 12100.5220, E, 000.0, 000.0, 220617,,, D*75

Field	Name	Example	Description
1	UTC time	175258.000	UTC time in hhmmss.sss format (000000.00 ~ 235959.999)
2	Status	A	Status 'V' = Navigation receiver warning 'A' = Data Valid
3	Latitude	2447.08700	Latitude in dddmm.mmmm format Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator 'N' =North 'S' = South
5	Longitude	12100.52210	Longitude in dddmm.mmmmm format Leading zeros transmitted
6	E/W Indicator	Е	Longitude hemisphere indicator 'E' = East 'W' = West
7	Speed over ground	0.000	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	0.000	Course over ground in degrees (000.0 ~ 359.9)
9	UTC Date	220617	UTC date of position fix, ddmmyy format
10	Mode indicator	D	Mode indicator 'N' = Data not valid 'A' = Autonomous mode 'D' = Differential mode 'E' = Estimated (dead reckoning) mode
11	checksum	75	

5. Packaging Information

The following packing is for reference only, the specific packing information is subject to the actual delivery situation. Also, Packaging can be customized.

Packing Details:

Unit: mm

Quantity per tray: 90pcs Quantity per carton: 1800pcs

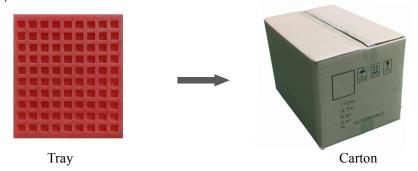


Figure4: Packaging physical Figure

Model Name	MOQ for MP	Minimum Package: 1800pcs
		Size: 365mm ×330mm ×365mm
GAM-1818F1LB-BKGB	1800pcs	N.W: 12.78 kg
		G.W: 13.98 kg (\pm 5%)

Revision History

Version	Date	Author	Description
2.0.0	2024-11-15	Bella	Compile and release

©Copyright 2024 Gotop Technology Co., Ltd. All Right Reserved The information contained herein is subject to change without notice. Gotop Technology Co., LTD

Add:AreaC,4th layer,A1 building,QingHu Silicon Valley Power,LongHua district ,Shenzhen ,China

Phone: 86-755-23804156 fax: 86-755-23804155 N 22° 32' 17", E 114° 07' 07" http://www.gotop-zzu.com

Not to be reproduced in whole or part for any purpose without written permission of Gotop Technology Inc ('Gotop'). Information provided by Gotop is believed to be accurate and reliable. These materials are provided by Gotop as a service to its customers and may be used for informational purposes only. Gotop assumes no responsibility for errors or omissions in these materials, nor for its use. Gotop reserves the right to change specification at any time without notice.

These materials are provides 'as is' without warranty of any kind, either expressed or implied, relating to sale and/or use of Gotop products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. Gotop further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Gotop shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Gotop products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.